Search results for "gamma filter"
showing 3 items of 3 documents
Explicit recursivity into reproducing kernel Hilbert spaces
2011
This paper presents a methodology to develop recursive filters in reproducing kernel Hilbert spaces (RKHS). Unlike previous approaches that exploit the kernel trick on filtered and then mapped samples, we explicitly define model recursivity in the Hilbert space. The method exploits some properties of functional analysis and recursive computation of dot products without the need of pre-imaging. We illustrate the feasibility of the methodology in the particular case of the gamma-filter, an infinite impulse response (IIR) filter with controlled stability and memory depth. Different algorithmic formulations emerge from the signal model. Experiments in chaotic and electroencephalographic time se…
Support Vector Machines Framework for Linear Signal Processing
2005
This paper presents a support vector machines (SVM) framework to deal with linear signal processing (LSP) problems. The approach relies on three basic steps for model building: (1) identifying the suitable base of the Hilbert signal space in the model, (2) using a robust cost function, and (3) minimizing a constrained, regularized functional by means of the method of Lagrange multipliers. Recently, autoregressive moving average (ARMA) system identification and non-parametric spectral analysis have been formulated under this framework. The generalized, yet simple, formulation of SVM LSP problems is particularized here for three different issues: parametric spectral estimation, stability of I…
Robust g-filter using support vector method
2004
This Letter presents a new approach to time series modelling using the support vector machines (SVM). Although the g filter can provide stability in several time series models, the SVM is proposed here to provide robustness in the estimation of the g filter coefficients. Examples in chaotic time series prediction and channel equalization show the advantages of the joint SVM g filter. Publicado